RECENT ERUPTION OF DEEP GROUNDWATER INTO ATHABASCA VALLIS

Devon Burr, Alfred McEwen, Laszlo Keszthelyi, Jennifer Grier

Megaripples?

Origination of floodwater

- NOT melting of ground ice in real-time
 - ◆ Too slow for the volumetric discharge rate suggested by the surface channel
 - ◆ No location of surface ponding apparent
- Therefore, must have been extant as liquid in the subsurface, i.e., either a (perched?) aquifer, or the global groundwater table

Depth of the liquid water

- Minimal/no subsidence apparent at the surface (in contrast to the chaotic terrain)
- Therefore, must have been deep, to avoid the subsidence associated with dewatering
- Mogi model: suggests depth was (greater than) several kms

Simple Mogi Model for Aquifer Depth

~20 km radius, ~100 m deep, depression observed at source of Athabasca Valles.

Estimated flow rates are a million m³/s.

If the flood lasted a week, the aquifer must be ~30 km deep.

~1 day flood if aquifer at ~10 km.

Conclusions: AV was formed by

- Deep groundwater
- Recently flooded out from the Cerberus Fossae